Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 26
Filtrar
1.
Pathol Oncol Res ; 30: 1611643, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38515456

RESUMO

The increasing knowledge of molecular alterations in malignancies, including mutations and regulatory failures in the mTOR (mechanistic target of rapamycin) signaling pathway, highlights the importance of mTOR hyperactivity as a validated target in common and rare malignancies. This review summarises recent findings on the characterization and prognostic role of mTOR kinase complexes (mTORC1 and mTORC2) activity regarding differences in their function, structure, regulatory mechanisms, and inhibitor sensitivity. We have recently identified new tumor types with RICTOR (rapamycin-insensitive companion of mTOR) amplification and associated mTORC2 hyperactivity as useful potential targets for developing targeted therapies in lung cancer and other newly described malignancies. The activity of mTOR complexes is recommended to be assessed and considered in cancers before mTOR inhibitor therapy, as current first-generation mTOR inhibitors (rapamycin and analogs) can be ineffective in the presence of mTORC2 hyperactivity. We have introduced and proposed a marker panel to determine tissue characteristics of mTOR activity in biopsy specimens, patient materials, and cell lines. Ongoing phase trials of new inhibitors and combination therapies are promising in advanced-stage patients selected by genetic alterations, molecular markers, and/or protein expression changes in the mTOR signaling pathway. Hopefully, the summarized results, our findings, and the suggested characterization of mTOR activity will support therapeutic decisions.


Assuntos
Neoplasias Pulmonares , Serina-Treonina Quinases TOR , Humanos , Proteína Companheira de mTOR Insensível à Rapamicina/genética , Proteína Companheira de mTOR Insensível à Rapamicina/metabolismo , Serina-Treonina Quinases TOR/genética , Serina-Treonina Quinases TOR/metabolismo , Alvo Mecanístico do Complexo 2 de Rapamicina/metabolismo , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Sirolimo/farmacologia , Fatores de Transcrição/metabolismo
2.
Br J Cancer ; 130(7): 1119-1130, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38341510

RESUMO

BACKGROUND: Kidney transplant recipients (KTRs) face an increased risk of renal cell carcinoma (RCC), in which the immunosuppressive regimen plays an important role. This study aimed to identify intracellular signalling alterations associated with post-transplant (post-tx) tumour formation. METHODS: Expression of mTOR-related proteins were analysed in kidneys obtained from end-stage renal disease (ESRD) patients and RCCs developed in KTRs or non-transplant patients. The effects of tacrolimus (TAC) and rapamycin (RAPA) on mTOR activity, proliferation, and tumour growth were investigated through different in vitro and in vivo experiments. RESULTS: Elevated mTORC1/C2 activity was observed in post-tx RCCs and in kidneys of TAC-treated ESRD patients. In vitro experiments demonstrated that TAC increases mTOR activity in a normal tubular epithelial cell line and in the investigated RCC cell lines, moreover, promotes the proliferation of some RCC cell line. In vivo, TAC elevated mTORC1/C2 activity in ischaemic kidneys of mice and enhanced tumour growth in xenograft model. CONCLUSIONS: We observed significantly increased mTOR activity in ischaemic kidneys and post-tx RCCs, which highlights involvement of mTOR pathway both in the healing or fibrotic processes of kidney and in tumorigenesis. TAC-treatment further augmented the already elevated mTOR activity of injured kidney, potentially contributing to tumorigenesis during immunosuppression.


Assuntos
Carcinoma de Células Renais , Falência Renal Crônica , Neoplasias Renais , Humanos , Tacrolimo/efeitos adversos , Carcinoma de Células Renais/patologia , Alvo Mecanístico do Complexo 1 de Rapamicina , Imunossupressores/efeitos adversos , Serina-Treonina Quinases TOR/metabolismo , Falência Renal Crônica/induzido quimicamente , Falência Renal Crônica/complicações , Neoplasias Renais/patologia , Carcinogênese
3.
Cancers (Basel) ; 16(3)2024 Jan 26.
Artigo em Inglês | MEDLINE | ID: mdl-38339294

RESUMO

Lung carcinoma is one of the most common cancer types for both men and women. Despite recent breakthroughs in targeted therapy and immunotherapy, it is characterized by a high metastatic rate, which can significantly affect quality of life and prognosis. Rictor (encoded by the RICTOR gene) is known as a scaffold protein for the multiprotein complex mTORC2. Among its diverse roles in regulating essential cellular functions, mTORC2 also facilitates epithelial-mesenchymal transition and metastasis formation. Amplification of the RICTOR gene and subsequent overexpression of the Rictor protein can result in the activation of mTORC2, which promotes cell survival and migration. Based on recent studies, RICTOR amplification or Rictor overexpression can serve as a marker for mTORC2 activation, which in turn provides a promising druggable target. Although selective inhibitors of Rictor and the Rictor-mTOR association are only in a preclinical phase, they seem to be potent novel approaches to reduce tumor cell migration and metastasis formation. Here, we summarize recent advances that support an important role for Rictor and mTORC2 as potential therapeutic targets in the treatment of lung cancer. This is a traditional (narrative) review based on Pubmed and Google Scholar searches for the following keywords: Rictor, RICTOR amplification, mTORC2, Rictor complexes, lung cancer, metastasis, progression, mTOR inhibitors.

4.
Sci Rep ; 13(1): 19610, 2023 11 10.
Artigo em Inglês | MEDLINE | ID: mdl-37949943

RESUMO

Alterations in mTOR signalling molecules, including RICTOR amplification, have been previously described in many cancers, particularly associated with poor prognosis. In this study, RICTOR copy number variation (CNV) results of diagnostic next-generation sequencing (NGS) were analysed in 420 various human malignant tissues. RICTOR amplification was tested by Droplet Digital PCR (ddPCR) and validated using the "gold standard" fluorescence in situ hybridisation (FISH). Additionally, the consequences of Rictor protein expression were also studied by immunohistochemistry. RICTOR amplification was presumed in 37 cases with CNV ≥ 3 by NGS, among these, 16 cases (16/420; 3.8%) could be validated by FISH, however, ddPCR confirmed only 11 RICTOR-amplified cases with lower sensitivity. Based on these, neither NGS nor ddPCR could replace traditional FISH in proof of RICTOR amplification. However, NGS could be beneficial to highlight potential RICTOR-amplified cases. The obtained results of the 14 different tumour types with FISH-validated RICTOR amplification demonstrate the importance of RICTOR amplification in a broad spectrum of tumours. The newly described RICTOR-amplified entities could initiate further collaborative studies with larger cohorts to analyse the prevalence of RICTOR amplification in rare diseases. Finally, our and further work could help to improve and expand future therapeutic opportunities for mTOR-targeted therapies.


Assuntos
Variações do Número de Cópias de DNA , Neoplasias , Humanos , Neoplasias/genética , Serina-Treonina Quinases TOR/genética , Proteína Companheira de mTOR Insensível à Rapamicina/genética , Sequenciamento de Nucleotídeos em Larga Escala , Amplificação de Genes
5.
Magy Onkol ; 67(3): 165-180, 2023 Sep 28.
Artigo em Húngaro | MEDLINE | ID: mdl-37768116

RESUMO

Failures of anti-tumour therapies and drug resistance initiate difficulties in cancer treatments often caused by alterations in signalling network activity, including PI3K/Akt/mTOR hyperactivity due to oncogenic mutations. In this review, we summarise the relevance of mTOR (mechanistic target of rapamycin) dysregulation identified decades ago, which is now known to be characteristic of many tumours. In this context, we present differences in activity, function and testability of mTOR kinase complexes (mTORC1 and mTORC2) differing in structure, regulatory mechanisms and inhibitor sensitivity. We highlight that genetic alterations, including RICTOR amplification and associated mTOR hyperactivity, are relevant in targeted therapy development. It is recommended to investigate mTOR profile activity in patients for whom mTOR inhibitor therapies are considered since the current first-generation mTOR inhibitors (rapamycin and analogues) may be ineffective in case of mTORC2 hyperactivity. Ongoing phase trials of new inhibitors and combination therapies are promising in advanced stage patients selected by molecular markers.

6.
Magy Onkol ; 67(3): 237-246, 2023 Sep 28.
Artigo em Húngaro | MEDLINE | ID: mdl-37768119

RESUMO

The issues surrounding the cost effectiveness of drug development and the ethical concerns associated with animal testing, emphasise the necessity for innovative in vitro models that allow enhanced pre-selection. Therefore, we aim to create 3D bioprinted tissue mimetic structures (TMS) utilizing various human cancer cell lines. We have generated TMSs from human tumour cell lines (breast, kidney, glioma), with detailed characterisation of the ZR75.1 cell line. In this study, the tissue heterogeneity, the growth rate, and the drug sensitivity of different in vitro and in vivo models were compared. Tissue formation occurs within the TMS after one week, with a tissue heterogeneity similar to in vivo growing tumours. Moreover, TMSs exhibit similar drug sensitivity to that observed in vivo. In summary, the established 3D bioprinted TMSs represent an advanced in vitro model, which can contribute to achieve a more effective and ethical drug development process in the field of oncology.


Assuntos
Glioma , Animais , Humanos , Linhagem Celular Tumoral , Oncologia
7.
Pathol Oncol Res ; 29: 1610996, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36843955

RESUMO

Growing evidence propagates those alternative technologies (relevant human cell-based-e.g., organ-on-chips or biofabricated models-or artificial intelligence-combined technologies) that could help in vitro test and predict human response and toxicity in medical research more accurately. In vitro disease model developments have great efforts to create and serve the need of reducing and replacing animal experiments and establishing human cell-based in vitro test systems for research use, innovations, and drug tests. We need human cell-based test systems for disease models and experimental cancer research; therefore, in vitro three-dimensional (3D) models have a renaissance, and the rediscovery and development of these technologies are growing ever faster. This recent paper summarises the early history of cell biology/cellular pathology, cell-, tissue culturing, and cancer research models. In addition, we highlight the results of the increasing use of 3D model systems and the 3D bioprinted/biofabricated model developments. Moreover, we present our newly established 3D bioprinted luminal B type breast cancer model system, and the advantages of in vitro 3D models, especially the bioprinted ones. Based on our results and the reviewed developments of in vitro breast cancer models, the heterogeneity and the real in vivo situation of cancer tissues can be represented better by using 3D bioprinted, biofabricated models. However, standardising the 3D bioprinting methods is necessary for future applications in different high-throughput drug tests and patient-derived tumour models. Applying these standardised new models can lead to the point that cancer drug developments will be more successful, efficient, and consequently cost-effective in the near future.


Assuntos
Bioimpressão , Neoplasias da Mama , Animais , Humanos , Feminino , Bioimpressão/métodos , Inteligência Artificial , Modelos Biológicos
8.
Int J Mol Sci ; 23(18)2022 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-36142502

RESUMO

Metabolic characteristics of kidney cancers have mainly been obtained from the most frequent clear cell renal cell carcinoma (CCRCC) studies. Moreover, the bioenergetic perturbances that affect metabolic adaptation possibilities of papillary renal cell carcinoma (PRCC) have not yet been detailed. Therefore, our study aimed to analyze the in situ metabolic features of PRCC vs. CCRCC tissues and compared the metabolic characteristics of PRCC, CCRCC, and normal tubular epithelial cell lines. The protein and mRNA expressions of the molecular elements in mammalian target of rapamycin (mTOR) and additional metabolic pathways were analyzed in human PRCC cases compared to CCRCC. The metabolic protein expression pattern, metabolite content, mTOR, and metabolic inhibitor sensitivity of renal carcinoma cell lines were also studied and compared with tubular epithelial cells, as "normal" control. We observed higher protein expressions of the "alternative bioenergetic pathway" elements, in correlation with the possible higher glutamine and acetate consumption in PRCC cells instead of higher glycolytic and mTOR activity in CCRCCs. Increased expression of certain metabolic pathway markers correlates with the detected differences in metabolite ratios, as well. The lower lactate/pyruvate, lactate/malate, and higher pyruvate/citrate intracellular metabolite ratios in PRCC compared to CCRCC cell lines suggest that ACHN (PRCC) have lower Warburg glycolytic capacity, less pronounced pyruvate to lactate producing activity and shifted OXPHOS phenotype. However, both studied renal carcinoma cell lines showed higher mTOR activity than tubular epithelial cells cultured in vitro, the metabolite ratio, the enzyme expression profiles, and the higher mitochondrial content also suggest increased importance of mitochondrial functions, including mitochondrial OXPHOS in PRCCs. Additionally, PRCC cells showed significant mTOR inhibitor sensitivity and the used metabolic inhibitors increased the effect of rapamycin in combined treatments. Our study revealed in situ metabolic differences in mTOR and metabolic protein expression patterns of human PRCC and CCRCC tissues as well as in cell lines. These underline the importance in the development of specific new treatment strategies, new mTOR inhibitors, and other anti-metabolic drug combinations in PRCC therapy.


Assuntos
Carcinoma de Células Renais , Neoplasias Renais , Carcinoma de Células Renais/patologia , Citratos , Glutamina , Humanos , Neoplasias Renais/metabolismo , Lactatos , Inibidores de MTOR , Malatos , Piruvatos , RNA Mensageiro , Sirolimo/farmacologia , Serina-Treonina Quinases TOR
9.
Allergy Asthma Clin Immunol ; 18(1): 60, 2022 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-35787812

RESUMO

BACKGROUND: Hereditary angioedema (HAE) is a rare, life-threatening disease. The knowledge about the molecular pathogenesis of HAE has derived mainly from investigating blood samples. However, limited data are available on the role of the molecular mechanisms in the affected tissues during HAE attack. OBJECTIVE: The aim of our study was to explore the histological changes occurring in HAE attacks. METHODS: Post mortem macro-, microscopic and immunohistological assessment of upper airway tissues of a patient with HAE due to C1 inhibitor deficiency (C1-INH-HAE) type 2 who died from laryngeal HAE attack was compared with a non-HAE patient who died from other condition without any signs of angioedema. RESULTS: Compared to the control patient, we demonstrated stronger T cell/monocyte infiltration and a more intense C1-INH staining in the C1-INH-HAE patient. The expression of both bradykinin receptors (B1/B2) was observed with a slightly lower level in the C1-INH-HAE patient than in the control patient. PAR1 expression was strongly reduced in the C1-INH-HAE patient suggesting overactivation of this hyperpermeability inducing receptor. CONCLUSION: Our unique case and novel results correspond to the knowledge about C1-INH and BDKRs observed in plasma; however, it revealed new information about the pathomechanism of HAE attack focusing on the potential involvement of PAR1 in edema formation. This observation, if it is verified by subcutaneous biopsy studies, may designate a new therapeutic target in HAE.

10.
Int J Mol Sci ; 23(13)2022 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-35806452

RESUMO

Monolayer cultures, the less standard three-dimensional (3D) culturing systems, and xenografts are the main tools used in current basic and drug development studies of cancer research. The aim of biofabrication is to design and construct a more representative in vivo 3D environment, replacing two-dimensional (2D) cell cultures. Here, we aim to provide a complex comparative analysis of 2D and 3D spheroid culturing, and 3D bioprinted and xenografted breast cancer models. We established a protocol to produce alginate-based hydrogel bioink for 3D bioprinting and the long-term culturing of tumour cells in vitro. Cell proliferation and tumourigenicity were assessed with various tests. Additionally, the results of rapamycin, doxycycline and doxorubicin monotreatments and combinations were also compared. The sensitivity and protein expression profile of 3D bioprinted tissue-mimetic scaffolds showed the highest similarity to the less drug-sensitive xenograft models. Several metabolic protein expressions were examined, and the in situ tissue heterogeneity representing the characteristics of human breast cancers was also verified in 3D bioprinted and cultured tissue-mimetic structures. Our results provide additional steps in the direction of representing in vivo 3D situations in in vitro studies. Future use of these models could help to reduce the number of animal experiments and increase the success rate of clinical phase trials.


Assuntos
Bioimpressão , Neoplasias , Alginatos/química , Animais , Bioimpressão/métodos , Humanos , Hidrogéis/química , Impressão Tridimensional , Engenharia Tecidual/métodos , Tecidos Suporte/química
11.
Pathol Oncol Res ; 28: 1610231, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35392503

RESUMO

Activation of the mTOR pathway has been observed in osteosarcoma, however the inhibition of mammalian target of rapamycin (mTOR) complex 1 has had limited results in osteosarcoma treatment. Certain metabolic pathways can be altered by mTOR activation, which can affect survival. Our aim was to characterize the mTOR profile and certain metabolic alterations in pediatric osteosarcoma to determine the interactions between the mTOR pathway and metabolic pathways. We performed immunohistochemistry on 28 samples to analyze the expression of mTOR complexes such as phospho-mTOR (pmTOR), phosphorylated ribosomal S6 (pS6), and rapamycin-insensitive companion of mTOR (rictor). To characterize metabolic pathway markers, we investigated the expression of phosphofructokinase (PFK), lactate dehydrogenase-A (LDHA), ß-F1-ATPase (ATPB), glucose-6-phosphate dehydrogenase (G6PDH), glutaminase (GLS), fatty acid synthetase (FASN), and carnitin-O-palmitoyltransferase-1 (CPT1A). In total, 61% of the cases showed low mTOR activity, but higher pmTOR expression was associated with poor histological response to chemotherapy and osteoblastic subtype. Rictor expression was higher in metastatic disease and older age at the time of diagnosis. Our findings suggest the importance of the Warburg-effect, pentose-phosphate pathway, glutamine demand, and fatty-acid beta oxidation in osteosarcoma cells. mTOR activation is linked to several metabolic pathways. We suggest performing a detailed investigation of the mTOR profile before considering mTORC1 inhibitor therapy. Our findings highlight that targeting certain metabolic pathways could be an alternative therapeutic approach.


Assuntos
Neoplasias Ósseas , Osteossarcoma , Criança , Humanos , Alvo Mecanístico do Complexo 1 de Rapamicina , Alvo Mecanístico do Complexo 2 de Rapamicina , Sirolimo/farmacologia , Serina-Treonina Quinases TOR/metabolismo
12.
Cancer Metastasis Rev ; 40(4): 1141-1157, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34958428

RESUMO

Small cell lung carcinoma (SCLC) is characterized by high metastatic rate and poor prognosis. The platinum-based chemotherapy still represents the backbone of the therapy; however, acquired resistance develops almost in all patients. Although SCLC has been formerly considered a homogeneous disease, recent advances in SCLC research have highlighted the importance of inter- and intratumoral heterogeneity and have resulted in the subclassification of SCLC. The newly described SCLC subtypes are characterized by distinct biological behavior and vulnerabilities that can be therapeutically exploited. The PI3K/Akt/mTOR pathway is frequently affected in SCLC, and its activation represents a promising therapeutic target. Since the mTOR pathway is a master regulator of cellular metabolism, its alterations may also influence the bioenergetic processes of SCLC cells. Despite the encouraging preclinical results, both mTOR and metabolic inhibitors have met limited clinical success so far. Patient selection for personalized therapy, the development of rational drug combinations, and a better understanding of heterogeneity and spatiotemporal evolution of the tumor cells may improve efficacy and can help to overcome acquired resistance. Here we provide a summary of current investigations regarding the role of the mTOR pathway and metabolic alterations in the progression and metastasis formation of SCLC.


Assuntos
Neoplasias Pulmonares , Carcinoma de Pequenas Células do Pulmão , Humanos , Neoplasias Pulmonares/patologia , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transdução de Sinais , Carcinoma de Pequenas Células do Pulmão/tratamento farmacológico , Carcinoma de Pequenas Células do Pulmão/metabolismo , Carcinoma de Pequenas Células do Pulmão/patologia , Serina-Treonina Quinases TOR/metabolismo
13.
Int J Mol Sci ; 22(15)2021 Jul 27.
Artigo em Inglês | MEDLINE | ID: mdl-34360785

RESUMO

Metabolic alteration is characteristic during tumour growth and therapy; however, targeting metabolic rewiring could overcome therapy resistance. mTOR hyperactivity, autophagy and other metabolic processes, including mitochondrial functions, could be targeted in breast cancer progression. We investigated the growth inhibitory mechanism of rapamycin + doxycycline treatment in human breast cancer model systems. Cell cycle and cell viability, including apoptotic and necrotic cell death, were analysed using flow cytometry, caspase activity measurements and caspase-3 immunostainings. mTOR-, autophagy-, necroptosis-related proteins and treatment-induced morphological alterations were analysed by WesTM, Western blot, immunostainings and transmission electron microscopy. The rapamycin + doxycycline combination decreased tumour proliferation in about 2/3rd of the investigated cell lines. The continuous treatment reduced tumour growth significantly both in vivo and in vitro. The effect after short-term treatment was reversible; however, autophagic vacuoles and degrading mitochondria were detected simultaneously, and the presence of mitophagy was also observed after the long-term rapamycin + doxycycline combination treatment. The rapamycin + doxycycline combination did not cause apoptosis or necrosis/necroptosis, but the alterations in autophagy- and mitochondria-related protein levels (LC3-B-II/I, p62, MitoTracker, TOM20 and certain co-stainings) were correlated to autophagy induction and mitophagy, without mitochondria repopulation. Based on these results, we suggest considering inducing metabolic stress and targeting mTOR hyperactivity and mitochondrial functions in combined anti-cancer treatments.


Assuntos
Protocolos de Quimioterapia Combinada Antineoplásica/farmacologia , Autofagia/efeitos dos fármacos , Neoplasias da Mama/tratamento farmacológico , Proliferação de Células/efeitos dos fármacos , Mitocôndrias/metabolismo , Proteínas de Neoplasias/metabolismo , Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Doxiciclina/farmacologia , Feminino , Células HT29 , Humanos , Células MCF-7 , Mitocôndrias/patologia , Sirolimo/farmacologia
14.
Cancer Metastasis Rev ; 40(4): 989-1033, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-35029792

RESUMO

Despite advancements in cancer management, tumor relapse and metastasis are associated with poor outcomes in many cancers. Over the past decade, oncogene-driven carcinogenesis, dysregulated cellular signaling networks, dynamic changes in the tissue microenvironment, epithelial-mesenchymal transitions, protein expression within regulatory pathways, and their part in tumor progression are described in several studies. However, the complexity of metabolic enzyme expression is considerably under evaluated. Alterations in cellular metabolism determine the individual phenotype and behavior of cells, which is a well-recognized hallmark of cancer progression, especially in the adaptation mechanisms underlying therapy resistance. In metabolic symbiosis, cells compete, communicate, and even feed each other, supervised by tumor cells. Metabolic reprogramming forms a unique fingerprint for each tumor tissue, depending on the cellular content and genetic, epigenetic, and microenvironmental alterations of the developing cancer. Based on its sensing and effector functions, the mechanistic target of rapamycin (mTOR) kinase is considered the master regulator of metabolic adaptation. Moreover, mTOR kinase hyperactivity is associated with poor prognosis in various tumor types. In situ metabolic phenotyping in recent studies highlights the importance of metabolic plasticity, mTOR hyperactivity, and their role in tumor progression. In this review, we update recent developments in metabolic phenotyping of the cancer ecosystem, metabolic symbiosis, and plasticity which could provide new research directions in tumor biology. In addition, we suggest pathomorphological and analytical studies relating to metabolic alterations, mTOR activity, and their associations which are necessary to improve understanding of tumor heterogeneity and expand the therapeutic management of cancer.


Assuntos
Ecossistema , Neoplasias , Carcinogênese/metabolismo , Humanos , Neoplasias/patologia , Transdução de Sinais , Serina-Treonina Quinases TOR/metabolismo , Microambiente Tumoral
15.
Cancers (Basel) ; 12(9)2020 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-32899149

RESUMO

In spite of tremendous developments in breast cancer treatment, the relatively high incidence of relapsing cases indicates a great need to find new therapeutic strategies in recurrent, metastatic and advanced cases. The bioenergetic needs of growing tumours at the primary site or in metastases-accumulating genomic alterations and further heterogeneity-are supported by metabolic rewiring, an important hallmark of cancer. Adaptation mechanisms as well as altered anabolic and catabolic processes balance according to available nutrients, energy, oxygen demand and overgrowth or therapeutic resistance. Mammalian target of rapamycin (mTOR) hyperactivity may contribute to this metabolic plasticity and progression in breast carcinomas. We set out to assess the metabolic complexity in breast cancer cell lines and primary breast cancer cases. Cellular metabolism and mTOR-related protein expression were characterised in ten cell lines, along with their sensitivity to specific mTOR and other metabolic inhibitors. Selected immunohistochemical reactions were performed on ~100 surgically removed breast cancer specimens. The obtained protein expression scores were correlated with survival and other clinicopathological data. Metabolic and mTOR inhibitor mono-treatments had moderate antiproliferative effects in the studied cell lines in a subtype-independent manner, revealing their high adaptive capacity and survival/growth potential. Immunohistochemical analysis of p-S6, Rictor, lactate dehydrogenase A, glutaminase, fatty acid synthase and carnitine palmitoyltransferase 1A in human samples identified high mTOR activity and potential metabolic plasticity as negative prognostic factors for breast cancer patients, even in subtypes generally considered as low-risk. According to our results, breast cancer is characterised by considerable metabolic diversity, which can be targeted by combining antimetabolic treatments and recent therapies. Alterations in these pathways may provide novel targets for future drug development in breast cancer. We also propose a set of immunostainings for scoring metabolic heterogeneity in individual cases in order to select patients who may benefit from more accurate follow-up and specific therapies.

16.
Cancers (Basel) ; 12(7)2020 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-32709151

RESUMO

mTOR activation has been observed in rhabdomyosarcoma (RMS); however, mTOR complex (mTORC) 1 inhibition has had limited success thus far. mTOR activation alters the metabolic pathways, which is linked to survival and metastasis. These pathways have not been thoroughly analyzed in RMSs. We performed immunohistochemistry on 65 samples to analyze the expression of mTOR complexes (pmTOR, pS6, Rictor), and several metabolic enzymes (phosphofructokinase, lactate dehydrogenase-A, ß-F1-ATPase, glucose-6-phosphate dehydrogenase, glutaminase). RICTOR amplification, as a potential mechanism of Rictor overexpression, was analyzed by FISH and digital droplet PCR. In total, 64% of the studied primary samples showed mTOR activity with an mTORC2 dominance (82%). Chemotherapy did not cause any relevant change in mTOR activity. Elevated mTOR activity was associated with a worse prognosis in relapsed cases. RICTOR amplification was not confirmed in any of the cases. Our findings suggest the importance of the Warburg effect and the pentose-phosphate pathway beside a glutamine demand in RMS cells. The expression pattern of the studied mTOR markers can explain the inefficacy of mTORC1 inhibitor therapy. Therefore, we suggest performing a detailed investigation of the mTOR profile before administering mTORC1 inhibitor therapy. Furthermore, our findings highlight that targeting the metabolic plasticity could be an alternative therapeutic approach.

17.
J Clin Endocrinol Metab ; 105(6)2020 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-32232382

RESUMO

BACKGROUND: Cytosine intermediaries 5-methylcytosine (5mC) and 5-hydroxymethylcytosine (5hmC), epigenetic hallmarks, have never been investigated in pituitary neuroendocrine tumors (PitNET). OBJECTIVE: To examine methylation-demethylation status of global deoxyribonucleic acid (DNA) in PitNET tissues and to assess its correlation with clinical and biological parameters. MATERIALS AND METHODS: Altogether, 57 PitNET and 25 corresponding plasma samples were collected. 5mC and 5hmC were investigated using liquid chromatography-tandem mass spectrometry. Expression of DNA methyltransferase 1 (DNMT1); tet methylcytosine dioxygenase 1 through 3 (TET1-3); and ubiquitin-like, containing PHD and RING finger domains 1 and 2 (UHRF1-2) were measured by reverse transcription-polymerase chain reaction. Levels of 5hmC and UHRF1-2 were explored by immunohistochemistry. Effect of demethylating agent decitabine was tested on pituitary cell lines. RESULTS: 5hmC/5mC ratio was higher in less differentiated PitNET samples. A negative correlation between Ki-67 proliferation index and 5hmC, 5hmC to 5mC ratio were revealed. Higher 5mC was observed in SF-1 + gonadotroph adenomas with a higher Ki-67 index. Expressions of TET2 and TET3 were significantly higher in adenomas with higher proliferation rate. UHRF1 showed gradually increased expression in higher proliferative adenoma samples, and a significant positive correlation was detected between UHRF2 expression and 5hmC level. Decitabine treatment significantly decreased 5mC and increased 5hmC levels in both cell lines, accompanied with decreased cell viability and proliferation. CONCLUSION: The demethylation process negatively correlated with proliferation rate and the ratio of 5hmC to 5mC was higher in less differentiated adenomas. Therefore, epigenetic markers can be potential biomarkers for PitNET behavior. Altering the epigenome in adenoma cells by decitabine decreased proliferation, suggesting that this treatment might be a novel medical treatment for PitNET.


Assuntos
Biomarcadores Tumorais/genética , Proliferação de Células , Metilação de DNA , DNA de Neoplasias/análise , Epigênese Genética , Tumores Neuroendócrinos/patologia , Neoplasias Hipofisárias/patologia , 5-Metilcitosina/análogos & derivados , 5-Metilcitosina/química , Adulto , Idoso , Idoso de 80 Anos ou mais , Estudos de Casos e Controles , DNA (Citosina-5-)-Metiltransferase 1/genética , DNA de Neoplasias/genética , Proteínas de Ligação a DNA/genética , Dioxigenases , Feminino , Seguimentos , Humanos , Masculino , Pessoa de Meia-Idade , Tumores Neuroendócrinos/genética , Neoplasias Hipofisárias/genética , Prognóstico , Proteínas Proto-Oncogênicas/genética , Ubiquitina-Proteína Ligases/genética , Adulto Jovem
18.
Cancers (Basel) ; 12(3)2020 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-32150977

RESUMO

Pheochromocytoma/paragangliomas (Pheo/PGL) are rare endocrine cancers with strong genetic background. Mutations in the SDHB subunit of succinate dehydrogenase (SDH) predispose patients to malignant disease with limited therapeutic options and poor prognosis. Using a host of cellular and molecular biology techniques in 2D and 3D cell culture formats we show that SDH inhibition had cell line specific biological and biochemical consequences. Based on our studies performed on PC12 (rat chromaffin cell line), Hela (human cervix epithelial cell line), and H295R (human adrenocortical cell line) cells, we demonstrated that chromaffin cells were not affected negatively by the inhibition of SDH either by siRNA directed against SDHB or treatment with SDH inhibitors (itaconate and atpenin A5). Cell viability and intracellular metabolite measurements pointed to the cell line specific consequences of SDH impairment and to the importance of glutamate metabolism in chromaffin cells. A significant increase in glutaminase-1 (GLS-1) expression after SDH impairment was observed in PC12 cells. GLS-1 inhibitor BPTES was capable of significantly decreasing proliferation of SDH impaired PC12 cells. Glutaminase-1 and SDHB expressions were tested in 35 Pheo/PGL tumor tissues. Expression of GLS1 was higher in the SDHB low expressed group compared to SDHB high expressed tumors. Our data suggest that the SDH-associated malignant potential of Pheo/PGL is strongly dependent on GLS-1 expression and glutaminases may be novel targets for therapy.

19.
Pathol Oncol Res ; 26(1): 35-48, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-32016810

RESUMO

With the discovery of rapamycin 45 years ago, studies in the mechanistic target of rapamycin (mTOR) field started 2 decades before the identification of the mTOR kinase. Over the years, studies revealed that the mTOR signaling is a master regulator of homeostasis and integrates a variety of environmental signals to regulate cell growth, proliferation, and metabolism. Deregulation of mTOR signaling, particularly hyperactivation, frequently occurs in human tumors. Recent advances in molecular profiling have identified mutations or amplification of certain genes coding proteins involved in the mTOR pathway (eg, PIK3CA, PTEN, STK11, and RICTOR) as the most common reasons contributing to mTOR hyperactivation. These genetic alterations of the mTOR pathway are frequently observed in lung neoplasms and may serve as a target for personalized therapy. mTOR inhibitor monotherapy has met limited clinical success so far; however, rational drug combinations are promising to improve efficacy and overcome acquired resistance. A better understanding of mTOR signaling may have the potential to help translation of mTOR pathway inhibitors into the clinical setting.


Assuntos
Neoplasias Pulmonares/metabolismo , Serina-Treonina Quinases TOR/metabolismo , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Biomarcadores Tumorais/antagonistas & inibidores , Biomarcadores Tumorais/genética , Biomarcadores Tumorais/metabolismo , Humanos , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/patologia , Alvo Mecanístico do Complexo 1 de Rapamicina/antagonistas & inibidores , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Alvo Mecanístico do Complexo 2 de Rapamicina/antagonistas & inibidores , Alvo Mecanístico do Complexo 2 de Rapamicina/metabolismo , Inibidores de Proteínas Quinases/farmacologia , Inibidores de Proteínas Quinases/uso terapêutico , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/genética , Serina-Treonina Quinases TOR/antagonistas & inibidores
20.
Pathol Oncol Res ; 26(1): 23-33, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31187466

RESUMO

The high-grade brain malignancy, glioblastoma multiforme (GBM), is one of the most aggressive tumours in central nervous system. The developing resistance against recent therapies and the recurrence rate of GBMs are extremely high. In spite several new ongoing trials, GBM therapies could not significantly increase the survival rate of the patients as significantly. The presence of inter- and intra-tumoral heterogeneity of GBMs arise the problem to find both the pre-existing potential resistant clones and the cellular processes which promote the adaptation mechanisms such as multidrug resistance, stem cell-ness or metabolic alterations, etc. In our work, the in situ metabolic heterogeneity of high-grade human glioblastoma cases were analysed by immunohistochemistry using tissue-microarray. The potential importance of the detected metabolic heterogeneity was tested in three glioma cell lines (grade III-IV) using protein expression analyses (Western blot and WES Simple) and therapeutic drug (temozolomide), metabolic inhibitor treatments (including glutaminase inhibitor) to compare the effects of rapamycin (RAPA) and glutaminase inhibitor combinations in vitro (Alamar Blue and SRB tests). The importance of individual differences and metabolic alterations were observed in mono-therapeutic failures, especially the enhanced Rictor expressions after different mono-treatments in correlation to lower sensitivity (temozolomide, doxycycline, etomoxir, BPTES). RAPA combinations with other metabolic inhibitors were the best strategies except for RAPA+glutaminase inhibitor. These observations underline the importance of multi-targeting metabolic pathways. Finally, our data suggest that the detected metabolic heterogeneity (the high mTORC2 complex activity, enhanced expression of Rictor, p-Akt, p-S6, CPT1A, and LDHA enzymes in glioma cases) and the microenvironmental or treatment induced metabolic shift can be potential targets in combination therapy. Therefore, it should be considered to map tissue heterogeneity and alterations with several cellular metabolism markers in biopsy materials after applying recently available or new treatments.


Assuntos
Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Glioma/metabolismo , Redes e Vias Metabólicas/efeitos dos fármacos , Neoplasias Encefálicas/metabolismo , Neoplasias Encefálicas/patologia , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Sinergismo Farmacológico , Inibidores Enzimáticos/farmacologia , Glioblastoma/metabolismo , Glioblastoma/patologia , Glioma/patologia , Humanos , Temozolomida/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...